• Book

    Analyse de données avec Python - Optimiser la préparation des données avec Pandas, Numpy, Jupyter et IPython-collection...

    Auteur: Wes Mckinney

    Analyse de données avec Python - Optimiser la préparation des données avec Pandas, Numpy, Jupyter et IPython-collection...

    • Auteur: Wes Mckinney
    • ISBN: 9782412069189

    Une bible pour les ingénieurs en science des données pour manipuler, traiter et nettoyer les données en PythonCe livre vous fera découvrir des instructions complètes pour la manipulation, le traitement, le nettoyage et la compression des jeux de données en Python. Mise à jour pour les dernières version 3.x de Python, la seconde édition de ce guide pratique est bourrée d'études de cas pratiques qui vous montrent comment résoudre efficacement un large ensemble de problèmes d'analyse de données. Vous y apprendrez à maîtriser les dernières versions de Pandas, NumPy, IPython et autre Jupyter. Au programme : Utilisez le shell IPython et Jupyter Notebook pour des explorer des projets informatiques Apprenez les fonctionnalités de base et avancées de NumPy (le raccourci de Numerical Python) Démarrez avec les outils d'analyse de données de la bibliothèque pandas Utiliser des outils flexibles pour charger, nettoyer, transformer, fusionner et remodeler les données Créez des visualisations informatives avec matplotlib Appliquez les outils de regroupement de pandas pour découper, trancher et résumer des jeux de données Analysez et manipulez des données provenant de séries chronologiques régulières et irrégulières Apprenez à résoudre les problèmes d'analyse de données du monde réel avec des exemples détaillés

  • Book

    Bases de données

    Auteur: Jean-Luc Hainaut

    Bases de données

    • Auteur: Jean-Luc Hainaut
    • ISBN: 978-2-10-078672-5

    Ce manuel vise un triple objectif : comprendre les concepts théoriques, apprendre à utiliser des bases de données, et enfin savoir en construire de nouvelles. La première partie explique les notions de base sur les structures de données, les systèmes de gestion de bases de données, le modèle relationnel... La deuxième décrit le langage SQL et les fonctions qui permettent de tirer le meilleur parti d'une base de données. La dernière partie détaille les méthodes de construction des bases de données relationnelles puis des bases relationnelles-objet. L'ouvrage papier est complété par un site web comprenant des tutoriels, des exercices corrigés, des planches PowerPoint destinées aux enseignants. Ces tutoriels permettent à l'étudiant de mettre en pratique de manière active les notions expliquées dans le livre. Cette quatrième édition comporte des mises à jour sur les bases de données NoSQL, sur les nouveaux mécanismes de transaction ( WAL et MVCC) et sur les blockchains.

  • Book

    Iot-Based Smart Waste Management for Environmental Sustainability

    Auteur: Biswaranjan Acharya, Satarupa Dey, Mohammed Zidan

    Iot-Based Smart Waste Management for Environmental Sustainability

    • Auteur: Biswaranjan Acharya, Satarupa Dey, Mohammed Zidan
    • ISBN: 9781003184096

    -

  • Book

    IoT and Big Data Analytics for Smart Cities A Global Perspective

    Auteur: Sathiyaraj Rajendran, Munish Sabharwal

    IoT and Big Data Analytics for Smart Cities A Global Perspective

    • Auteur: Sathiyaraj Rajendran, Munish Sabharwal
    • ISBN: 978-1-003-21740-4

    The book IoT and Big Data Analytics (IoT-BDA) for Smart Cities – A Global Perspective, emphasizes the challenges, architectural models, and intelligent frameworks with smart decisionmaking systems using Big Data and IoT with case studies. The book illustrates the benefits of Big Data and IoT methods in framing smart systems for smart applications. The text is a coordinated amalgamation of research contributions and industrial applications in the field of smart cities.

  • Book

    IoT, Cloud and Data Science Selected peer-reviewed full text papers from the International Research Conference on IoT, Cloud...

    Auteur: S. Prasanna Devi, G. Paavai Anand, M. Durgadevi

  • Book

    Machine Learning, Big Data, and IoT for Medical Informatics

    Auteur: Pardeep Kumar, Yugal Kumar, Mohamed A. Tawhid

    Machine Learning, Big Data, and IoT for Medical Informatics

    • Auteur: Pardeep Kumar, Yugal Kumar, Mohamed A. Tawhid
    • ISBN: 978-0-12-821777-1

    Machine Learning, Big Data, and IoT for Medical Informatics focuses on the latest techniques adopted in the field of medical informatics. In medical informatics, machine learning, big data, and IOT-based techniques play a significant role in disease diagnosis and its prediction. In the medical field, the structure of data is equally important for accurate predictive analytics due to heterogeneity of data such as ECG data, X-ray data, and image data. Thus, this book focuses on the usability of machine learning, big data, and IOT-based techniques in handling structured and unstructured data. It also emphasizes on the privacy preservation techniques of medical data. This volume can be used as a reference book for scientists, researchers, practitioners, and academicians working in the field of intelligent medical informatics. In addition, it can also be used as a reference book for both undergraduate and graduate courses such as medical informatics, machine learning, big data, and IoT.

  • Book

    Biomedical Data Mining for Information Retrieval Methodologies, Techniques, and Applications

    Auteur: Sujata Dash, et al.

    Biomedical Data Mining for Information Retrieval Methodologies, Techniques, and Applications

    • Auteur: Sujata Dash, et al.
    • ISBN: 978-1-119-71124-7

    This book comprehensively covers the topic of mining biomedical text, images, and visual features for information retrieval. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care. It brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. Healthcare informatics aims to ensure high-quality, efficient healthcare, better treatment, and quality of life by analyzing biomedical and healthcare data including patient's data, electronic health records (EHRs) and lifestyle. Previously it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical Image Mining, a novel research area, due to its large amount of biomedical images increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients' biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions related to health care. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients.

  • Book

    Big Data and Social Science Data Science Methods and Tools for Research and Practice

    Auteur: Ian Foster, Rayid Ghani

    Big Data and Social Science Data Science Methods and Tools for Research and Practice

    • Auteur: Ian Foster, Rayid Ghani
    • ISBN: 9780429324383

    Big Data and Social Science: Data Science Methods and Tools for Research and Practice, Second Edition shows how to apply data science to real-world problems, covering all stages of a data-intensive social science or policy project. Prominent leaders in the social sciences, statistics, and computer science as well as the field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and collect appropriate data, apply data science methods and tools to the data, and recognize and respond to data errors, biases, and limitations.

  • Book

    Data Analysis for Business, Economics, and Policy

    Auteur: Gábor Békés, Gábor Kézdi

    Data Analysis for Business, Economics, and Policy

    • Auteur: Gábor Békés, Gábor Kézdi
    • ISBN: 978-1-108-48301-8

    This textbook provides future data analysts with the tools, methods, and skills needed to answer data-focused, real-life questions; to carry out data analysis; and to visualize and interpret results to support better decisions in business, economics, and public policy. Data wrangling and exploration, regression analysis, machine learning, and causal analysis are comprehensively covered, as well as when, why, and how the methods work, and how they relate to each other. As the most effective way to communicate data analysis, running case studies play a central role in this textbook. Each case starts with an industry-relevant question and answers it by using real-world data and applying the tools and methods covered in the textbook. Learning is then consolidated by 360 practice questions and 120 data exercises. Extensive online resources, including raw and cleaned data and codes for all analysis in Stata, R, and Python, can be found at www.gabors-data-analysis.com.

  • Book

    Data Analysis and Decision Making - Textbook ONLY

    Auteur: S. Christian Albright, Wayne L. Winston

    Data Analysis and Decision Making - Textbook ONLY

    • Auteur: S. Christian Albright, Wayne L. Winston
    • ISBN: 978-0-538-47610-2

    DATA ANALYSIS AND DECISION MAKING is a teach-by-example approach, learner-friendly writing style, and complete Excel integration focusing on data analysis, modeling, and spreadsheet use in statistics and management science. The Premium Online Content Website (accessed by a unique code with every new book) includes links to the following add-ins: the Palisade Decision Tools Suite (@RISK, StatTools, PrecisionTree, TopRank, RISKOptimizer, NeuralTools, and Evolver) and SolverTable, allowing users to do sensitivity analysis. All of the add-ins is revised for Excel 2007 and notes about Excel 2010 are added where applicable.

  • Book

    Business Analytics

    Auteur: James R. Evans

    Business Analytics

    • Auteur: James R. Evans
    • ISBN: 978-0-13-523167-8

    -

  • Book

    Smart Big Data in Digital Agriculture Applications

    Auteur: Haoyu Niu, YangQuan Chen

    Smart Big Data in Digital Agriculture Applications

    • Auteur: Haoyu Niu, YangQuan Chen
    • ISBN: 978-3-031-52645-9

    In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent “complexity” and consequent variability within the agricultural process. Much optimism is vested in the field of artificial intelligence, such as machine learning (ML) and computer vision (CV), where the efficient utilization of big data to make it “smart” is of paramount importance in agricultural research. Central to this learning process lies the intricate relationship between plant physiology and optimization methods. The key to the learning process is the plant physiology and optimization method. Crafting an efficient optimization method raises three pivotal questions: 1.) What represents the best approach to optimization? 2.) How can we achieve a more optimal optimization? 3.) Is it possible to demand “more optimal machine learning,” exemplified by deep learning, while minimizing the need for extensive labeled data for digital agriculture?