| DETAIL SUR L'OUVRAGE | ||
|---|---|---|
|
|
Auteur: Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher J. Pal ISBN: 978-0-12-804291-5 Maison Ed.: Fourth Edition Ville Ed.: Année Ed.: 2017 Domaine: Intelligence Artificielle Rayon: D Catégorie: Livre |
Data Mining: Practical Machine Learning Tools and Techniques aims to demystify data mining and machine-learning: presenting a practical, hands-on guide to extracting meaningful information from raw data using established algorithms, statistical and machine-learning techniques, and tool-supported workflows. The book combines theory and practice: it explains the core concepts underpinning classification, regression, clustering, association rules, model evaluation, data preprocessing, and more but also shows how to implement them in real-world settings using the accompanying software toolkit (WEKA). Ouvrir le fichier |